Program	me	B.Sc. (Engg.) Energy	Course Code	EE 212	Credit Hours	2+0=2		
C C		Engineering			Creat Hours	2+0 2		
Course Title Engineering Materials								
Course Introduction								
-	-	erials falls within the know	-					
-		understanding. This course	-		-			
		gy and infrastructure, play bridges and airplanes to e	-		-			
		ineered based on their uniq						
	-	lectrical conductivity, to m				-		
		s about the materials that	-	-				
		omposites, each with distin			-			
-	-	d ductility, are essential in				•		
		erties for a wide range of manding environments; ar	-	-	-			
		eve superior performance.	-			-		
		ncing technology, enhance	•					
		ries. As research progresse	• •		-	•		
expand the possibilities of what can be achieved in engineering and design.								
Mapped SDGs SDG-9: Build resilient infrastructure, promote inclusive and sustainable								
Inapped SDGs industrialization and foster innovation Learning Outcomes								
1. Distin	guich	between the various proper	•	(C4)				
		potential of materials in eng						
Course Content Assignments/Readings								
	Unit	-I Introduction and prope	 erties of	The	teacher may assi	gn home		
Week 1	engineering materials				signments/problem-based			
	1.1 I	ntroduction to Engineering		ning/reading	tivity ato			
	1.2 Significance of materials in engineering				erials/learning activity etc			
Week 2	equipment design and fabrication							
	1.3.	Mechanical and thermal pro						
Week 3 applications								
	1							
	1.4.	Fundamental concepts of st	ress and strain. th	neir				
Week 4		Fundamental concepts of st nation and applications in F						
Week 4 Week 5	estin	-	Engineering Desig					

	2.2 Polymeric materials						
Week 6	2.3 Glass						
	2.4 Composite materials						
Week 7	2.5 Ceramics and stoneware						
WEEK /	2.6 Acid-resistant bricks and tiles						
Week 8	2.7 Selection of materials of construction						
WCCK O	2.8 Introduction to corrosion and its types						
	Unit III Biomaterials						
Week 9	3.1 The Need for Biomaterials and Biomedical Devices						
	3.2 Historical Development of Biomaterials						
Week 10	3.3 Properties of Biomaterials						
WEEK IU	3.4 Biomaterial Sources						
Week 11	3.5 Biocompatibility						
week 11	3.6 Bio composites						
	Unit-IV Nanomaterials						
Week 12	4.1 Introduction to Nanomaterials						
	4.2 Motivation and Scope of Nanomaterials						
Week 13	4.3 Manufacturing processes for Nanomaterials						
Week 14	4.4 Characterization of Nanomaterials						
Week 15	4.5 Applications of Nanomaterials						
Week 16	16 4.6 Bio Nanotechnology						
	Textbooks and Reading Material						
	dav, S. S., Dhiman, R., & Anklekar, R. M. (2024). Mat	erials Science and Engineering.					
	mbridge Scholars Publishing. 1pta, K. M. (2020). Engineering Materials: Research	Applications and Advances					
	ited Kingdom: CRC PRESS, Taylor & Francis Group.	, reprivations and revalles.					
	jiwara, A., Tan, K. H., Tanaka, M., Zaki, R. M., Ikrai	n, T. (2020). Key Engineering					
	aterials and Technologies. Switzerland: Trans Tech Pub						
4. Ta	ntra, R. (2016). Nanomaterial characterization: An intro	duction. John Wiley & Sons.					

5.	Francis, L. F. (2015). Materials processing: a unified approach to processing of metals,	
	ceramics and polymers. Academic Press.	

- 6. Sinnott, R., Richardson, J. F., & Coulson, J. M. (2013). Chemical engineering: An introduction to chemical engineering design. Elsevier.
- 7. De Graef, M., & McHenry, M. E. (2012). Structure of materials: an introduction to crystallography, diffraction and symmetry. Cambridge University Press.
- 8. Schimmel, T. (2012). Nanotechnology. An Introduction. By Jeremy J. Ramsden. AngewandteChemie International Edition, 51(39), 9733-9733.

Teaching Learning Strategies

The learning and teaching strategies will be comprised of lectures via multimedia, white/blackboard, group discussions to enhance critical thinking, individual and group assignments, project based learning, reading and writing assignments, and presentations.

Assignments: Types and Number with Calendar

Week	1	2	3	4	5	6	7	8
Activity	-	-	-	Assignment 1	-	-	-	-

Week	9	10	11	12	13	14	15	16
Activity	-	-	-	Assignment 2	-	-	-	-

The abovementioned schedule of assignments/quizzes/presentations is tentative. The schedule will be provided to the students at the start of semester.

Sr. No.	Elements	Weightage	Details					
1.	Midterm Assessment	35%	Written assessment at the mid-point of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work, report writing, and viva-voce examination, etc.					
2.	Sessional Assessment	25%	This assessment may include classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.					
3.	Final Assessment 40%		Written assessment at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work, report writing, and viva-voce examination, etc.					